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Abstract. We report a numerical evidence that the string tension σ can be viewed as an order parameter
of the phase transition, which separates the smooth phase from the crumpled one, in the fluid surface
model of Helfrich and Polyakov-Kleinert. The model is defined on spherical surfaces with two fixed vertices
of distance L. The string tension σ is calculated by regarding the surface as a string connecting the two
points. We find that the phase transition strengthens as L is increased, and that σ vanishes in the crumpled
phase and non-vanishes in the smooth phase.

PACS. 64.60.-i General studies of phase transitions – 68.60.-p Physical properties of thin films,
nonelectronic – 87.16.Dg Membranes, bilayers, and vesicles

1 Introduction

A considerable number of studies have been conducted
on the phase structure of Helfrich and Polyakov-Kleinert
model of membranes [1–13]. The triangulated surface
model can be classified into two groups [14,15]. One is the
model of fixed connectivity surfaces, and the other the dy-
namical connectivity surfaces, which are called fluid sur-
faces. Both kinds of surfaces become smooth (crumpled) at
infinite (zero) bending rigidity b. The model on fixed con-
nectivity surfaces has been considered to undergo a finite-
b transition between the smooth phase and the crumpled
phase. A lot of numerical studies including those on fluid
surfaces so far support this fact [16–28]. However, there
seems to be no established understanding of phase transi-
tions in the fluid surface model.

Ambjorn et al. have studied a mass gap and a string
tension of the fluid model [19]. It was reported in [19] that
the mass gap and the string tension vanish at the critical
point of the phase transition, which has been considered
not to be characterized by a divergence of the specific heat.
The mass gap was extracted by assuming the spherical
surface as an oblong one-dimensional string with fixed end
points separated by a distance L. The string tension was
also computed by assuming a surface as a sheet of area A
with fixed boundary, and the same results as those of the
mass gap were obtained. They used the canonical Monte
Carlo simulations, which are equivalent with the grand
canonical ones.
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Recent numerical simulations on the fluid surface
model suggested that the phase transition is characterized
by a divergence of the specific heat, although the parame-
ter α, the coefficient of the co-ordination dependent term,
was assumed to have arbitrary values [25,26]. Therefore,
it is interesting to see whether the string tension vanishes
or not at the critical point of the transition of the model
with arbitrary α. The notation string tension in this pa-
per corresponds not to the string tension in [19] but to
the mass gap in [19]; we use string tension in place of the
mass gap and denote it by σ hence force.

From the simulation studies on the fluid model, we
obtained a numerical evidence that the string tension σ
vanishes in the crumpled phase and non-vanishes in the
smooth phase [28]. The result presented in [28] implies
that σ can be considered as an order parameter of the
phase transition.

The string tension is considered to be a key to under-
stand the phase structure of the fluid surfaces. Therefore,
we show in this paper our simulation data including those
presented in [28] in order to have an insight into further
investigations on the phase structure of fluid surfaces.

We comment on why the result of non-vanishing string
tension could be a relevant one. It is possible to con-
sider that the non-vanishing string tension is connected
to two interesting problems. The first is the problem of
quark confinement, which is a problem in high-energy
physics. The linear potential V (L) ∼ L assumed between
quark and anti-quark separated by distance L gives a fi-
nite string tension, which is compatible with our result of
non-vanishing string tension.
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The second is a conversion of external forces into an
internal energy and vice versa in real physical membranes,
and is a rather practical problem. We can consider that
the transition depends on the temperature: the surface be-
comes crumpled at T > Tc and smooth at T < Tc, where
Tc is the transition temperature. Therefore, the surface
can be picked up in two points and extended to suffi-
ciently large at T > Tc with zero external force because
of the zero string tension. Then, lowering the tempera-
ture to T < Tc, we have a finite string tension between
the two points on the surface. This is a conversion of the
internal energy S into an external force. Conversely, an
external force enlarging the surface in the smooth phase
can be accumulated as an internal energy. This is also easy
to understand because the free energy of a string can be
written as (tension)×(length). If the model in this paper
represents properties in some real membranes, our result
implies a possibility of such conversions.

2 Model

A sphere in R3 is discretized with piecewise linear trian-
gles. Every vertex is connected to its neighboring vertices
by bonds, which are the edges of triangles. Two vertices
are fixed as the boundary points separated by a distance L.

The Gaussian energy S1 and the bending energy S2

are defined by

S1 =
∑

(ij)

(Xi − Xj)
2
, S2 =

∑

i

(1 − cos θi) , (1)

where
∑

(ij) is the sum over bonds (ij), θi in S2 is the angle
between two triangles sharing the edge i, and Xi(∈ R3)
the position of the vertex i.

The partition function Z is defined by

Z(b, µ, α; L) =
∑

N

∑

T

∫ N∏

i=1

dXi exp [−S(X, T, N)] ,

S(X, T, N) = S1 + bS2 − µN − α
∑

i

log qi, (2)

where
∑

T denotes the sum over all possible triangula-
tions T , and N the total number of vertices. It should be
noted that the chemical potential term −µN and the co-
ordination dependent term −α

∑
i log qi are included in

the Hamiltonian. The expression S(X, T, N) shows that
S explicitly depends on the variables X , T and N . The
coefficient b is the bending rigidity, and µ the chemical
potential. Z depends on b, µ, α, and L. The surfaces are
allowed to self-intersect and hence phantom.

We consider that the phase structure of the model de-
pends on the choice of the integration measure

∏
i qα

i dXi,
where qi is the co-ordination number of the ver-
tex i [25,26]. The co-ordination dependent term in equa-
tion (2) comes from this integration measure, because∏

i qα
i dXi can also be written as

∏
i dXi exp(α

∑
i log qi).

This α is believed to be 2α = 3 [29–31], and hence it is

unclear whether α can take arbitrary value. On the other
hand qα

i is considered as a volume weight of the vertex
i in the integration dXi. Thus it is possible to extend
α to continuous numbers by assuming that the weight
takes a suitable value. Therefore, it is interesting to see
the dependence of σ on the phase transitions which can
be controlled by the parameter α. We note that the con-
tinuous α assumed in our model does not influence 2α=3
in the model of [29–31].

Note also that the constant term −α
∑

i log 6 can be
included in S of equation (2), because S can be written as
S=S1 + bS2−µ′N −α

∑
i log(qi/6), where µ=µ′−α log 6.

As a consequence, the total number N of vertices depends
on µ and α in the grand canonical simulations using S
that does not include the constant term. If the simulations
were done by using S that includes the constant term, the
results must be equivalent with those without the constant
term because of the relation between µ and µ′ described
above.

Let us comment on a relation between the value of α
and that of qmax the maximum co-ordination number, and
consider why the phase transition is sensitive to the value
of α. The reason why the phase transition is strength-
ened at negative α is that the co-ordination dependent
term −α

∑
i log qi crumples the surface when α < 0 and

competes with the bending energy term bS2 smoothing
the surface. On the contrary, the term −α

∑
i log qi tends

to make q such that q � 6 when α > 0. Because of the
fact that

∑
i qi is constant on triangulated surfaces due to

the topological constraint,
∑

i log qi becomes maximum
on the surfaces of uniform co-ordination number q. As
a consequence, negative α make the surface non-uniform
in q. Therefore, when α becomes negative large, then qmax

increases, and the surface becomes crumpled. While the
bending energy S2 makes the surface smooth, the co-
ordination dependent term with negative α makes the sur-
face crumpled. Thus two competitive forces co-exist when
α is negative: one is from the bending energy and the other
from the co-ordination dependent term.

We expect

Z(b, µ, α; L) ∼ exp(−σL) (3)

in the limit L → ∞ [19]. Then, by using the scale invari-
ance of the partition function, we have [15,19]

σ =
2〈S1〉 − 3〈N〉

L
, (4)

where 〈S1〉 and 〈N〉 are the mean values of S1 and N .
We note that a surface enclosing two fixed vertices is

not a one-dimensional string, because the perpendicular
size of the surface increases with N . However L is chosen
to be sufficiently larger than the perpendicular size, so
that equation (3) holds.

The specific heat, which is the fluctuation of S2, is
defined by CS2 =(b2/〈N〉)(∂2 log Z/∂b2), and is calculated
by using

CS2 =
b2

〈N〉
〈

(S2 − 〈S2〉)2
〉

. (5)
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The fluctuation of N denoted by CN can also be given by

CN =
µ2

〈N〉
〈

(N − 〈N〉)2
〉

. (6)

As we will see later, the phase transition of the model is
characterized by the divergence of CS2 and that of CN .

3 Monte Carlo technique

X is updated so that X ′=X+δX , where δX takes a value
randomly in a small sphere. The radius δr of the small
sphere is chosen to maintain about 50% acceptance rX for
the X-update. The radius δr is defined by using a constant
number ε as an input parameter so that δr = ε 〈l〉, where
〈l〉 is the mean value of bond length computed at every
250 MCS (Monte Carlo sweeps). It should be noted that
δr is almost fixed because 〈l〉 is constant and unchanged
in the equilibrium configurations.

T is updated by flipping a bond shared by two trian-
gles. The bonds are labeled by sequential numbers and
chosen randomly to be flipped. The rate of acceptance rT
for the bond flip is uncontrollable, and the value of rT is
about 30% ≤ rT ≤ 40%. N -trials for the updates of X
and N -trials for T are done consecutively, and these make
one MCS.

N is updated by both adsorption and desorption. In
the desorption, a vertex is randomly chosen, and then a
bond that is connected to the vertex is randomly chosen
so that the two vertices at the ends of the bond unite and
change to a new vertex. In the adsorption, a triangle is
randomly chosen in the same way that a bond is chosen
in the desorption, and a new vertex is added to the center
of the triangle. As a consequence, the Euler number (=2)
of the surface remains unchanged in the adsorption and
the desorption. The acceptance rate rN is uncontrollable
as rT is, and the value of rN is about 55% ≤ rN ≤ 65%
in our MC.

In the adsorption of a vertex, the corresponding change
of the total energy ∆S = S(new)−S(old) is calculated.
The adsorption is then accepted with the probability
Min[1, exp (−∆S) /(N + 1)]. In the desorption, ∆S =
S(new)−S(old) is calculated by assuming that one ver-
tex is removed. The desorption is then accepted with the
probability Min [1, N exp (−∆S)]. The adsorption and the
desorption are tried alternately at every 5-MCS.

We use surfaces of size N � 500, N � 1000, and N �
1500. The size N depends on both µ and α which is fixed
to three values: α =5.5, α = 0, and α =−5.5. The reason
for choosing these three values of α, the phase transition of
the fluid surfaces is sensitive to α as noted in the previous
section. The values of µ are chosen so that N �500, N �
1000, and N � 1500 for each α. The diameter L0(N) of
the spheres at the start of MC simulations is fixed so that∑

i l2i � 3N/2, where li is the length of the bond i. As a
consequence, L0(N) becomes

L0(N) ∝
√

N. (7)

0 5 10 15
0

0.5

1
h(q)

(a) α=5.5, µ=-1.87

q

L=3L0

b=1.22

0 5 10 15 20

(b) α=5.5, µ=-1.87

L=3L0

q

b=1.34

0 5 10 15
0

0.5

1

b=1.82

(c) α=-5.5, µ=15.9

L=3L0

h(q)

q 0 5 10 15 20

α=-5.5, µ=15.9(d)

L=3L0

q

b=1.92

Fig. 1. The normalized histogram h(q) of the co-ordination
number q at (a) α = −5.5, µ = −1.87, b = 1.22, (b) α =
−5.5, µ = −1.87, b = 1.34, (c) α = 5.5, µ = 15.9, b = 1.82, and
(d) α = 5.5, µ = 15.9, b = 1.92. The histograms were obtained
at the final 2 × 107 MCS.

We use three kinds of distance L of the boundary points
for each L0(N) such that L = 1.5L0(N), L = 2L0, and
L = 3L0(N). The distance is increased from L0(N) to L
in the first 5×106 MCS.

It should be noted that L = 1.5L0(N), L = 2L0,
and L = 3L0(N) become ∞ in the thermodynamic limit
N →∞ because of equation (7). Therefore, σ defined by
equation (3) can be extracted from these values of L at
sufficiently large N . Thus, the length L in this paper de-
pends on N and hence does not strictly correspond to the
one in [19]. In fact, the value of L in [19] is chosen so that
t = L/N changes for a given N . However, as we will see,
the scaling property of physical quantities, such as the de-
pendence of σ on N , obtained in this paper is compatible
with those of σ on t in [19].

4 Results

First, we show in Figures 1a–d a normalized histogram
h(q) of the co-ordination number q, which is obtained dur-
ing the final 2×107 MCS at (a) α = −5.5, µ = −1.87, b =
1.22, (b) α = −5.5, µ = −1.87, b = 1.34, (c) α = 5.5, µ =
15.9, b = 1.82, and (d) α = 5.5, µ = 15.9, b = 1.92. The
distance between the two vertices is L = 3L0, and the to-
tal number of vertices becomes N � 1500 in those cases.
The surface becomes crumpled in (a) and smooth in (b),
and there is no phase transition between these phases, as
we will see below. We note also that the surface becomes
crumpled in (c) and smooth in (d), and there is a first-
order transition between these phases on the contrary. We
see that the histograms shown in (a) and (b) are clearly
different from those in (c) and (d).

In order to show the difference more clearly, we plot
log h(q) against q in Figures 2a–d. We can see no co-
ordination number of q ≥ 24 in Figures 2a and b. To
the contrary, the curves in Figures 2c and d indicate that
there exist co-ordination numbers of q ≥ 200 and q ≥ 100
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Fig. 2. Plots of log h(q) against q at (a) α = −5.5, µ = −1.87,
b = 1.22, (b) α = −5.5, µ = −1.87, b = 1.34, (c) α = 5.5, µ =
15.9, b = 1.82, and (d) α = 5.5, µ = 15.9, b = 1.92, where h(q)
are those shown in Figures 1a–d.
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Fig. 3. The average vertex number 〈N〉 against b at (a) α=5.5,
L=1.5L0, (b) α=5.5, L=2L0, (c) α=5.5, L=3L0, (d) α=0,
L=1.5L0, (e) α=0, L=2L0, (f) α=0, L=3L0, (g) α=−5.5,
L=1.5L0, (h) α=−5.5, L=2L0, and (i) α=−5.5, L=3L0. The
symbols �, and © correspond to those obtained on surfaces
of size N �1000, and N �1500 respectively.

respectively. The curves of h(q) in Figures 2c and d in-
dicate that configurations of large co-ordination numbers
play some non-trivial role in the phase transition of fluid
surfaces.

The average vertex number 〈N〉 are plotted in Fig-
ures 3a–i: 〈N〉 in Figures 3a, b, and c are respectively
obtained at α = 5.5, L = 1.5L0; α = 5.5, L = 2L0; and
α=5.5, L=3L0. 〈N〉 in Figures 3d, e, and f are those at
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Fig. 4. The specific heat CS2 against b at (a) α = 5.5, L =
1.5L0, (b) α = 5.5, L = 2L0, (c) α = 5.5, L = 3L0, (d) α = 0,
L=1.5L0, (e) α=0, L=2L0, (f) α=0, L=3L0, (g) α=−5.5,
L = 1.5L0, (h) α =−5.5, L = 2L0, and (i) α =−5.5, L = 3L0.
The symbols �, �, and © correspond to those obtained on
surfaces of size N �500, N �1000, and N �1500 respectively.

α=0, L=1.5L0; α=0, L=2L0; and α=0, L=3L0. 〈N〉
in Figures 3g, h, and i are those at α =−5.5, L = 1.5L0;
α=−5.5, L=2L0; and α=−5.5, L=3L0. The symbols �,
and © in the figures correspond to those obtained on sur-
faces of size N �1000, and N �1500 respectively.

We find from Figures 3a–i that 〈N〉 is weakly depen-
dent on b and almost independent of L with fixed µ and
α. The fluctuation CN of 〈N〉 can change against b due to
this dependence of 〈N〉 on b, and will be presented below.

The specific heat CS2 defined by equation (5) are plot-
ted in Figures 4a–i and are respectively obtained at the
same conditions for 〈N〉 shown in Figures 3a–i.

CS2 at α=5.5 shown in Figures 4a, b, and c have peaks
at intermediate b, however, the growth of peaks with in-
creasing N is almost invisible. On the contrary, we clearly
see the growing of the peaks of CS2 at α = 0, L = 3L0 in
Figure 4f, and at α=−5.5 in Figures 4g, h, and i. These
indicate that the phase transition strengthens not only
with decreasing α but also with increasing L at least in
the region −5.5≤α≤0.

We comment on the total number of MCS and on the
thermalization MCS. The convergence speed slows down
when α decreases, because the maximum co-ordination
number qmax increases with decreasing α. 9.6×108 MCS
were done at α = −5.5, L = 3L0, b = 1.86, where CS2

has the peak; 7.6×108 MCS at α = −5.5, L = 2L0, b =
1.86; and 4×108 MCS at α = −5.5, L = 1.5L0, b = 1.86.
Relatively smaller number of MCS was done at b that are
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Fig. 5. Log-log plots of the peak values Cmax
S2 of the specific

heat CS2 against 〈N〉 obtained at (a) α = 5.5, (b) α = 0, and
(c) α=−5.5, and log-log plots of the peak values Cmax

N of CN

against 〈N〉 at (d) α=5.5, (e) α=0, and (f) α=−5.5.

distant from the transition point, and at α = 0, α = 5.5.
The thermalization sweeps was about 1×107 ∼ 3×107 on
surfaces of N �1500 at α=−5.5. Relatively smaller MCS
for the thermalization were done in other cases.

In order to see the scaling property of the peak values
Cmax

S2
, we plot Cmax

S2
against N in log-log scales in Fig-

ures 5a, b, and c respectively obtained at α = 5.5, α = 0,
and α=−5.5. We find that Cmax

S2
at α=5.5 in Figure 5a

saturate as N increases. On the contrary, Cmax
S2

at α = 0
in Figure 5b and those at α = −5.5 in Figure 5c clearly
scale according to

Cmax
S2

∝ Nν . (8)

From the slope of the straight lines in Figures 5b and c,
we have

ν = 0.027 ± 0.025 [α=0, L=1.5L0] ,
ν = 0.199 ± 0.032 [α=0, L=3L0] (9)

and

ν = 0.265 ± 0.025 [α=−5.5, L=1.5L0] ,
ν = 0.822 ± 0.182 [α=−5.5, L=3L0] . (10)

From the value ν =0.199±0.032 at α=0, L=3L0 in equa-
tion (9) and that ν =0.265±0.025 at α=−5.5, L=1.5L0

in equation (10), we understand that the surfaces un-
dergo continuous transitions at those conditions. More-
over, ν =0.822±0.182 in equation (10) indicates that the
phase transition is of first order.

The peak values Cmax
N of the specific heat CN , which

is the fluctuation of N defined by equation (6), is plotted
in Figures 5d, e, and f. We find also from these figures
of Cmax

N that the phase transition occurs at α = 0 and
α=−5.5, and that there is no phase transition at α=5.5.
Thus, we confirm that the phase structure described by
CN is compatible with that by CS2 .
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Fig. 6. String tension σ against b obtained at (a) α = 5.5,
L=1.5L0, (b) α=5.5, L=2L0, (c) α=5.5, L=3L0, (d) α=0,
L=1.5L0, (e) α=0, L=2L0, (f) α=0, L=3L0, (g) α=−5.5,
L = 1.5L0, (h) α =−5.5, L = 2L0, and (i) α =−5.5, L = 3L0.
The symbols �, �, and © correspond to those obtained on
surfaces of size N �500, N �1000, and N �1500 respectively.

Figures 6a–i are plots of the string tension σ against b,
which were obtained under the conditions that are exactly
same as those in Figures 4a–i. The string tension σ is cal-
culated by equation (4). We see in Figures 6a, b, and c
that σ increases with increasing L and that σ on surfaces
of small N is relatively larger than that of larger surfaces.
It is also understood from Figures 6a and b that σ de-
creases with increasing b on larger surfaces. This indicates
that σ on smooth surfaces are larger than those on crum-
pled surfaces. These properties of σ can be seen in those
obtained at α = 0 in Figures 6d and e, and also seen in
those obtained at α = −5.5 in Figures 6g and h. On the
contrary, we find from Figure 6i that σ rapidly changes
at the transition point when N is increased. We already
saw in Figure 4i that b=1.86 is the transition point of the
surface of size N � 1500 at α=−5.5, L=3L0. Therefore,
we can see in Figure 6i that the string tension σ vanishes
in the crumpled phase and non-vanishes in the smooth
phase.

In order to see the scaling property of σ, we introduce
the reduced bending rigidity λ such that

λ =
b

bc(µ, α)
− 1, (11)
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Fig. 7. Log-log plots of the string tension σ against 〈N〉 ob-
tained at (a) α=5.5, L=1.5L0, (b) α=5.5, L=2L0, (c) α=5.5,
L = 3L0, (d) α = 0, L = 1.5L0, (e) α = 0, L = 2L0, (f) α = 0,
L = 3L0, (g) α =−5.5, L = 1.5L0, (h) α =−5.5, L = 2L0, and
(i) α=−5.5, L=3L0.

where bc(µ, α) denotes the transition point where CS2 has
the peak value shown in Figures 4a–i. Then, the transi-
tion point bc(µ, α) is represented by λ = 0, the smooth
phase at b > bc(µ, α) by λ > 0, and the crumpled phase
at b < bc(µ, α) by λ < 0. The reason why we introduce λ
of equation (11) is because the transition point bc(µ, α)
moves right as N increases, as confirmed in Figure 4i for
example.

Figures 7a–i show log-log plots of σ against 〈N〉 ob-
tained at λ<0, λ=0, and λ>0. The straight lines in each
figure denote the scaling property of σ such as

σ ∝ N−κ (κ ≥ 0). (12)

We confirm from Figure 7i that σ non-vanishes at λ=0.03
in the smooth phase, which was expected also from Fig-
ure 6i [32]. Moreover, we find from Figures 7a–i, and equa-
tion (13) that almost all σ satisfy σ→0(N →∞), which is
the scaling property at the continuous transition in [19].
Recalling that continuous transitions can be seen at α=0
and α=−5.5 in Figures 5b and c [or e and f], we under-
stand that the scaling of σ shown in Figures 7a−i, except
the non-vanishing σ, are compatible with that in [19].

The exponent κ in equation (12) can be obtained by a
least squares fitting, and some of the results are as follows:

κ = 0.268± 0.006 [α=0, L=3L0, λ=0] ,
κ = 0.126± 0.019 [α=−5.5, L=3L0, λ=−0.03] ,
κ = −0.017± 0.041 [α=−5.5, L=3L0, λ=0.03] . (13)

The first κ in equation (13) was obtained at a continuous
transition point, and the second and the third were at the
discontinuous transition. Although κ=−0.017(41) in the
last of equation (13) appears to be ill-defined, we consider
that it is compatible with the non-vanishing string tension.

It should be emphasized that the scaling of σ in equa-
tion (12) is compatible with σ∝(L/N)δ with δ>0 in [19],
since L∝L0(N)∝√

N as described in equation (7). L0(N)
is the diameter of the initial sphere for the MC simu-
lations and chosen to L0(N) ∝ √

N as already noted in
equation (7).

In fact, we note that δ = 2κ and δ corresponds to
ν/(1−ν) in reference [19], where ν is about ν�0.28 in the
crumpled phase and ν�0.42 in the smooth phase close to
the critical point. These ν corresponds to κ�0.19 and κ�
0.36 respectively. Thus, these values of κ in reference [19]
are roughly consistent with the result κ=0.268(6) in equa-
tion (13), obtained at a continuous transition point.

5 Summary and conclusions

We have studied the phase structure of the fluid surface
model of Helfrich and Polyakov-Kleinert by grand canon-
ical simulations on spherical surfaces with two fixed ver-
tices of distance L. The model is defined by Hamiltonian S
containing the Gaussian term S1, the bending energy term
S2, the co-ordination dependent term S3, and the chemical
potential term −µN : S =S1+bS2−αS3−µN . It is expected
that the model undergoes a finite-b transition between the
smooth phase at b→∞ and the crumpled phase at b→0.
The phase transition was observed at α=0 and α=−5.5.
The order of the transition changes from second to first at
α=−5.5 with sufficiently large L. The string tension σ was
obtained by regarding the surface as a string connecting
the two vertices. It is remarkable that σ becomes nonzero
in the smooth phase separated by the discontinuous tran-
sition from the crumpled phase. Our results indicate that
σ can be viewed as an order parameter of the phase tran-
sition. It should be noted that our results are compatible
with those in [19], because the obtained σ in our study
vanishes at the critical point of the continuous transition.

As we have confirmed in this paper, configurations of
large co-ordination number appear in certain cases and
play some non-trivial role in the phase transition. Al-
though we have no clear interpretation of a broad dis-
tribution of co-ordination number, it is possible that the
existence of large co-ordination number is connected with
some heterogeneous structure of fluid surfaces.

The results presented in this paper are not conclusive.
Some problems remain to be studied: Can we find a finite
string tension in the smooth phase separated by a second-
order transition from the crumpled one? Can we find that
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the order of the transition remains unchanged on larger
surfaces? Can we find a clear interpretation of a broad dis-
tribution of the co-ordination number in biological mem-
branes? We consider that some points can be resolved by
the grand canonical MC simulations on sufficiently large
surfaces. We expect that the non-vanishing string tension
can also be obtained by the canonical Monte Carlo simu-
lations on fluid surfaces. Further numerical studies would
clarify the phase structure of the fluid model of Helfrich
and Polyakov-Kleinert.
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Research, No. 15560160. H.K. thanks N. Kusano, A. Nidaira,
and K. Suzuki for their invaluable help.
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